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The equations describing the variation of the radius of a water droplet

with time are investigated for quasi~stationary and nonstationary evap-
oration processes. Solutions of these equations are found in the form of
asymptotic series in powers of a small dimensionless parameter. Some
properties of the solutions are determined.

This paper is a continuation of 1], where the non-
stationary evaporation of a spherical droplet fixed rel-
ative to a homogeneous medium of infinite extent was
studied.

By means of an integral transformation of the type

V=|\ Vexp(—anrdr,

&

the problem of the variation of the droplet radius in
time (considering the effect of the reduction in droplet
size on the rate of the nonstationary process) was re-~
duced fo the problem at the moving liquid-gas phase
interface. Applying the Laplace transformation a non-
linear integrodifferential equation was obtained for the
radius of the evaporating droplet with solution in the
form of an asymptotic series in powers of the small
dimensionless parameter Ko:
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If the effect of the decrease in droplet size on the
rate of the process is neglected, it is easy to obtain
the following relation for the vapor density distribu-
tion in the space surrounding the droplet:
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where
erfc (z) = 1 —erf (2),

erf(2) = %« j‘ exp (—29) dz.
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Using (2), we can write the equation of mass trans-
fer across the droplet surface as follows:

R ) (3)

v« Dt

dR®* 2D
dt

(00 —py) (1+

We find the solution of nonlinear differential equa-
tion (3) in series form:

R =ry+ Kor, + Ko, + Kodr, + ... (4)

Substituting expansion (4) into (3) and equating the
coefficients of like powers of Ko on the left and right
sides, we obtain the following equations for the func-
tions ry, Iy, Ty, L5, ...t
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Using the solutions of Eqs. (5), we write expansion
(4) as
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The differential equation (3) can also be solved by suc-
cessive approximations using the recurrence relation

dR,
dt
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It is easy to show that by selecting the initial ra-
dius of the evaporating droplet as the zero-order ap-
proximation, we obtain a first approximation of the
solution that coincides with the first two terms of se-
ries (6), etc.

In the case of steady-state evaporation the mass
flux through any spherical surface concentric with
the droplet is a constant quantity given by

[ = —4m D 9P (7
or

In this case

Pe= 00+ S (0, — ). (8)
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Since the droplet radius and hence the rate of evap-
oration continuously decrease, the evaporationprocess
cannot be stationary. However, if the saturated vapor
density at the droplet temperature is much less than
the droplet density, evaporation may be assumed
quasi-stationary [2].

Since I = —dm/dt, where m = 47rR3y/3 is the mass
of the droplet, we can write Eq. (7) with distribution
(8) in the form

dR

RT -—KOD(S—‘I) (9)

We find the solution in the form of series (4), which,

" in this case, can be written as follows:
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After multiplying the asymptotic series by itself,
we have

= Rt + 2KoD (s— 1)¢,

which is also easily obtained by direct integration of
Eq. (9).

To simplify, we transform in (1), (6),
the dimensionless variables

and (10) to

V= R/Ro, T =f/to.

Selecting the characteristic time ty = R%/D, we have
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From the first two relations in (11) it is easy to
obtain
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Since when s < 1 (the droplet evaporates) the right
sides of (12) and (13) are positive, v > v*, dv/dt >
> dv*/dr or in dimensional variables

R>R*, (14)
AR 4R (15)
dt dt

Inequality (14) shows that at all values of 7 on the
interval 0 <7 <7, (7. is the dimensionless total
evaporation time in the quasi-stationary process) the
R = R(t) curve lies above the R* = R*(t) curve.

Since when s < 1 dR/dt and dR* /it are negative, we
can write (15) as

it follows that the absolute value of the rate of de-
crease of the droplet radius in the nonstationary evap-
oration process is greater than the absolute value of
the corresponding rate in the quasi-stationary process.
From the first and third of Eqs. (11) we derive

!‘””

v——v**=Ko&—:—s) ;/‘1:—{1-}—}(01 T
Va

+LKO{2(1;s) +2+3(52—- 1)} =

2
—{-2Ko[l+ S;1J+...}, (16)
dv __ 4wt =Kol—___s{1+Ko(l——s)1:+
dv dv T
+K0[2(1n 200=9) 4 4 36D ]1/m+
+2Kb[ S_l]a-...}. (17)
1

Since when s < 1 the right sides of (16) and (17) are
positive,

dv > dv**
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or in dimensional variables

R > R**, (18)
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From (18) and (19) there follow the same physical
conclusions as from inequalities (14) and (15).

An analysis of (12), (13), (16), and (17) yields as
t — 0 the asymptotic formulas
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It should be kept in mind that B and ¥ are of the or-
der of K¢*, while whens <1, B>0, F<O0,

With (6) and (10), it can be shown that for the differ-
ence R* — (R*)? there is an expansion of the form

R2__(R*)z= Ko 41/D(/1:‘5)R0 'l/t_—
VI
e | 4DV DL —s)p s 7y D19y f]_

KO[ 3Ry V' Vi 24
2¢1 __ )3 _

R =

4D?%(1 —s)® tz] .
3Ry

After multiplying the left and right sides of this
equation by 4w, we obtain
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From these relations it follows that as t — 0 and
s < 1 (the droplet evaporates) o > o*; the difference
between ¢ and o* increases with increase in the initial
droplet radius; when s > 1 (condensation takes place
at the droplet surface) o* > o; consequently, at the
beginning of the process the o* = o*(t) curve lies above
the o = o'(t) curve; the absolute rate of variation of the
surface for the evaporating droplet is less for the qua-
si-stationary than for the nonstationary process.

The properties of the curve representing the func-
tion R = R(t) in both the quasi-stationary and nonsta-
tionary cases are of considerable interest, particu-
larly from the theoretical standpoint. We will consider
some of these properties.

Since in the quasi-stationary process for any t

dR _~ KoD(1—y)

o : R <0,
R Ko*D*(l—sp?
Pt o <0,
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the graph of the function R = R{t) is a convex curve
with a gradient decreasing from —KoD(1 — 8)/Rg at t =
=0to—= att = {,

When s > 1 (condensation takes place at the droplet
surface) R = R(t) is an increasing function, Its graph
is a convex curve with gradient equal to DKo(s — 1)/
/Rq at t = 0 and tending to zero as t — +w,

After differentiation with respect to t we write re-
lation (3) as

dZR*

pr =KoD{s—1) x
I (20
X[ Rt 2t1/n—m]' )

Since when s < 1, dR*/dt <0, the second deriva-
tive of the function R* = R*(t) must change sign at
some value of t;. Consequently, in the case of nonsta-
tionary evaporation the function R* = R*(t) has a point
of inflection, for determining which we obtain the fol-
lowing approximate algebraic equation after a number
of transformations.

9D Ko(l —s)t; (Y nDf; + Ry = R} (21)

From the physical standpoint only pairs of positive
numbers t; and Ry are of interest (meaningful).

An analysis of Eq. (21) shows that as Ry decreases
the time corresponding to the point of inflection on
R* = R*(t) also decreases, i.e., t; = ¢(Ry) obtained
from (21) is an increasing function.

Since lim0 dR: = — o, R* = R*(t)—which describes

tot
the variation of the droplet radius in time in the non-
stationary evaporation process without allowance for
the effect of the reduction of droplet size on the rate
of the process—is concave at 0 <t < {; and convex at
t>t.

Equation (20) shows that in the case of a nonstation-
ary condensation process d?R*/dt* < 0 at any t. Conse-
quently, R* = R*(t) is an increasing function, whose
graph is a curve convex on the entire time axis with a
gradient equal to DKo{s — 1)/Rq at t = 0 and tending to
zero as t — +w,

For a nonstationary evaporation process with allow-
ance for the effect of the reduction in droplet size on
the rate of the process the R** = R*¥*(t) curve has the
same properties as the R¥ = R*(t) curve.

NOTATION

R is the droplet radius; t is the time; « is a con~
stant satisfying the condition Rea > 0; Ko is a dimen-
sionless parameter equal to the ratio of the saturated
vapor density at the droplet temperature to the drop-
let density; D is the diffusion coefficient for vapor in
air; s is the supersaturation; R, is the initial droplet
radius; p. is the vapor density in air; poc is its initial
value; pg is the saturated vapor density at droplet
temperature; r is a space coordinate; vy is the density
of water; I is the mass flux across a spherical sur-
face of radius r; v* and R* are the dimensionless and
dimensional droplet radius in the nonstationary pro-
cess of evaporation without allowance for the effect of
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reduction in droplet size on the rate of the process,
respectively; v** and R** are the same with allowance
for the effect of droplet size onthe rate of the process;
¢ and o* are the surfaces of droplets with radii R and
R*, respectively; A isaconstant equal to 16D Ko*(1 -

- 8)%; tie is the total droplet evaporation time; t is
the time corresponding to the point of inflection on

the R* = R*(t) curve.
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